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ABSTRACT 

 

The complex behavior and failure mechanisms of fiber-reinforced composite 

materials have made multiscale modeling a necessity when determining the response 

of composite structures. Current multiscale models, which bridge information between 

the microstructural constituents and the macroscopic response of a composite material, 

are limited to a prescribed set of boundary conditions to kinematically link the macro 

and micro scales, with the most popular being periodic. This restriction prevents these 

types of models from accounting for the effects of locally non-periodic regions within 

a composite structure. One such region is a free-edge boundary, which is a common 

damage initiation zone for many composite structures. In this work, a semi-concurrent 

multiscale model is implemented within ABAQUS which allows for non-periodic 

boundary conditions through the development of an energy based constitutive 

coupling between the scales whereby Hill’s energy condition, or energetic consistency 

between the macro and micro scales, is preserved. The methodology is applied to 

examine free-edge effects on 2D lamina RVE’s with cohesive fiber/matrix failure 

within a semi-concurrent scheme. 

 

INTRODUCTION 

 

 The complex and hierarchical nature of composite materials make them highly 

desirable for high-performance and multi-functional applications. Consequently, the 

various length scales and reinforcement architectures present in a given composite 

pose a serious challenge for engineers and designers in predicting and modeling 

failure and damaged response [1]. Over the last several decades, a variety of 

multiscale methods have been developed to incorporate the effects of the composite 

microstructure on the overall macroscopic behavior [2]. Available multiscale models 

can be classified into three generic categories: sequential, concurrent, and semi-

concurrent modeling [3]. These classifications are presented schematically in Figure 1.  

Sequential models include standard homogenization schemes which determine 

macroscopic material properties based on the composite microstructure and 

microconstituent properties [4–7]. These models, however, do not preserve 

microstructural information post-homogenization and only provide initial elastic  

_____________ 
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Figure 1: Classifications of multiscale methodologies 

 

properties. Extrapolating the homogenized response to non-linear regions or 

determining composite failure will rely heavily on experimental tests to characterize 

material failure. While a variety of failure criteria exist at the homogenized scale of the 

lamina, or even the full laminate, the World Wide Failure Exercises (WWFE) have 

shown that no available models successfully capture UD failure under complex multi-

axial loading states or for multi-ply laminates [8]. Concurrent models utilize domain 

decomposition, whereby detailed microstructural information is directly coupled at 

small regions of interest to a homogenized macroscopic domain [9–11]. A drawback 

of these methods is that the computational cost and memory requirements grow 

significantly with increasing size of the region of interest (i.e. due to large crack 

growth or diffuse damage). Additionally, adaptive remeshing schemes and 

transitionary elements are required to account for unknown a-priori damage paths and 

the coupling of multiple lengths scales in one FE mesh. Semi-concurrent models, on 

the other hand, preserve microstructural information by linking each integration point 

at the macroscopic level to a unique unit-cell boundary value problem (BVP) at the 

microscopic level [12–14]. The BVP, defined on a representative volume element 

(RVE), will determine the macroscopic response of the macroscopic integration point. 

This linking between the two scales is shown schematically in Figure 1, highlighting 

the passing of information between the weakly coupled scales. Despite the increased 

computational cost of semi-concurrent schemes over sequential methods, the 

uncoupled nature of each BVP allows for parallelization of the necessary 

microstructural solution. 

The work presented utilizes a semi-concurrent, nested finite element (FE) 

methodology similar to that pioneered by Feyel and Chaboche [15], whereby the unit-

cell BVP  is solved using the FE method. In contrast to other semi-analytical methods 

[16,17], implementing a FE solution scheme allows for the implementation of explicit 

damage modeling through cohesive zone modeling [18,19] or through the extended-
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Finite Element Method (XFEM) [3,20,21]. A significant limitation to current semi-

concurrent models is the available boundary conditions with which one can drive the 

unit-cell BVP. While periodic boundary conditions have found to be effective over 

uniform displacement or uniform traction boundary conditions for determining the 

effective properties of an RVE [22,23], recent work by Coenen et al. [24] and Aboudi 

and Ryvkin [25] have shown that semi-concurrent models with periodic boundary 

conditions cannot capture the true material behavior in the presence of localized 

damage. Although a variety of novel boundary conditions have been presented in 

literature to overcome this limitation [24,26], the proposed boundary conditions are 

modified forms of periodicity and unable to account for strong non-periodic effects. 

The proposed work focuses on developing a methodology for implementing non-

periodic boundary conditions in a semi-concurrent scheme while preserving energy 

between the scales.  

 

 

MULTISCALE FRAMEWORK 

 

The two main components in the semi-concurrent multiscale implementation 

are the localization and the homogenization rules. Localization refers to the passing of 

information from the homogenized global scale to local scale of the RVE. Conversely, 

homogenization refers to the determination of macroscopic quantities from the RVE, 

or the passing of information from RVE to the global integration point. In a 

deformation driven FE analysis, the localization rules provides the kinematic coupling 

from macroscopic to microscopic domains. Although the process can use the 

macroscopic strain at the selected integration point, the work that follows uses the 

macroscopic deformation gradient,  , as shown in Figure 2. The macroscopic 

deformation gradient is then used to specify necessary boundary conditions for the 

RVE’s BVP. Standard procedures assume a volume average relationship between the 

deformation at the global scale and that of the RVE shown in Equation (1).  

 
(1) 

The superscripts M and m represent macroscopic and microscopic quantities, 

respectively, F is the deformation gradient tensor, and  is the reference volume of 

the RVE. The way in which the macroscopic deformation gradient provides boundary 

conditions (displacements, or ) on the RVE are provided in Equation (2),  

 
(2) 

where  is the vector of reference configuration coordinates. The prescription of 

these displacements can be chosen for all nodes within the RVE, all nodes along the 

boundary, or restricted to the vertices in the case of periodicity. The homogenization 

procedure, which provides the macroscopic stress as a function of microscopic 

stresses, also involves an volume averaging relationship and is provided in Equation 

(3).  

 
(3) 

The stress is written using the first Piola-Kirkhoff stress tensor, , for convention, as 

it is the work conjugate to the deformation gradient. A second part of the 
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homogenization process is determining the instantaneous material Jacobian, , shown 

in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Overview of the semi-concurrent workflow and passing of information between the 

macroscale (global) and microscale (RVE/local). 

 

 

PROPOSED Z-SCALAR METHOD 
 

All multiscale schemes are required to preserve the Hill-Mandel relation which 

states that the variation of work at the global scale must equal the volume average of 

the variation of work at the local scale. This relation is shown graphically in Figure 3 

as well as in Equation (4),  

 
(4) 

where  is the variation of work at a particular scale. As a result of the Hill-Mandel 

relation, the kinematic and constitutive coupling between the macroscopic and 

microscopic domain are constrained to satisfy the averaging relations provided in 

equations (1) and (3). These two equations state the volume average of the stress/strain 

field variables throughout the RVE are equal to the corresponding macroscopic 

variables. Given these averaging relations, it is a trivial calculation to show that the 

Hill-Mandel relation is satisfied, and these calculations are given for various types of 

RVE boundary conditions in work by Kouznetsova [12]. Coenen et al. [24] enforced 

boundary conditions satisfying the strain averaging relations, then proved that the 

volume averaged microscopic stress tensor would in fact satisfy the work equivalence 

between the scales. Equation (5) below expresses the Hill-Mandel relation in terms of 

the individual deformation gradient and stress tensors. 

 
  

 
(5) 
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Figure 3. The work, or more precisely the variation of work, at both the macro and micro scales must 

be maintained for the multiscale scheme to be energetically consistent. 

As was discussed in the work by Coenen et al. [24], the strain averaging 

relation (or alternatively, the deformation averaging relation) is satisfied when the 

contributions of the micro-fluctuation on the volume average are zero. A simplified 

form of this statement is shown in Equation (6), 

 
(6) 

which is derived from the right hand side of Equation (1) and using Equation (7). It 

should be noted that the strain averaging relation is being written with respect to the 

deformation gradient rather than the strain tensor, however the equations still hold. 

The following relation 

 (7) 

describes the local, current coordinates  within the RVE as a function of the 

macroscopic deformation gradient and a function of the microfluctuation field, w, 

which is dependent on the microstructure. This superposition of a macroscale 

influence and the microfluctuation field is graphically represented in Figure 4. 

 
 

 

Work (Macro)            =           Work (Micro) 

           

          

 
      

RVE deformation Macroscale influence Microscale  influence 
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Figure 4: Schematic of the RVE deformation as a superposition of macroscale and microscale 

influences. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Illustration of the localization process, which has deformed the RVE to produce a unique 

amount of elastic strain energy defined by the box on the right. 

 

The strain, or deformation, averaging relation will only hold if last integral 

term in (6) is equal to zero. It has been shown in literature that periodic boundary 

conditions satisfy this requirement. Non-periodic, non-uniform boundary conditions, 

however, will contain a microscale influence field which will not set the integral term 

in (6) to be zero. The microscale influence field will be an unknown solution, 

dependent on the microstructure, thus the form of the macroscopic stress tensor cannot 

be solved analytically a-priori. Instead, it is assumed in this work that the volume 

average of the RVE stress field is a sufficient approximation, although there is no 

guarantee (due to the nature of the microfluctuation field) that it is consistent with 

Hill’s energetic conditions.  

In the first iteration of developing an energetically consistent stress tensor, an 

equivalence of elastic strain energy between the scales, as introduced by Hill [6], is 

directly enforced. First, the localization process is performed as in Figure 5 according 

to a given macroscopic quantity of deformation. At this stage, it is assumed that the 

localization provided a sufficient state of stress/strain within the RVE resulting in a 

given amount of elastic strain energy, shown by the blue box in Figure 5. It is desired 

to determine the macroscopic stress tensor required to ensure that the elastic strain 

energy at the global level matches that from the RVE. The formulation to follow 

assumes that the microconstituents are linear elastic with cohesive based interactions 

between the fibers and matrix. Due to the presence of elastic softening from the 

failing/failed cohesive surfaces, the elastic strain energy at the macroscopic level will 

be computed according to the diagram in Figure 6-(b), rather than the purely elastic 

case shown in Figure 6-(a). The 2D plane strain problem, to which this work is 

currently focused, requires that the elastic strain energy is computed from the 

contributions of stress and strain in the 3 degrees of freedom in the problem (11, 12, 

and 22 directions), shown in Figure 7. The condition of equivalent elastic strain energy 

between the scales enforces that the total energy shown in Figure 7 should be equal to 

that found during the localization process in Figure 5. Thus, this equality provides a 

constraint with which we can determine the form of the macroscopic stress. Although 

there are an infinite number of stress tensors, given known values of deformation 

   Macroscale                        Microscale 
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(strain) at the macroscopic level, that will satisfy the energy equivalence, it is hereby 

assumed that the macroscopic stress state can be approximated as being proportional 

to the volume average of the RVE stresses. 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6: Stress-strain diagrams highlighting the elastic strain energy for two non-linear material 

responses where (a) the material is purely elastic and (b) the material has non-linearity due to elastic 

softening. 

This assumption of proportionality introduces a scaling parameter, z, which 

will be found by enforcing energy equivalence between the global and local scale. The 

computation of the macroscopic stress tensor will now be found using  

 
 

(8) 

where  is the macroscopic Cauchy stress tensor computed from volume averaging 

the microscale Cauchy stress tensors, , in the RVE. The energy balance with 

respect to the elastic strain energy at the macro and micro scales can be written 

 

 

(9

) 

where left hand side represents the elastic strain energy at the microlevel, , 

from the RVE localization shown in Figure 5, while the right hand side represents the 

elastic strain energy computed using the volume averaged stresses. The z scalar 

parameter is computed using 

 
 

 

(10) 

where it is a function of the microscopic elastic strain energy, macroscopic strains, and 

volume averaged RVE stresses. This scalar parameter represents this energy based 

constitutive coupling between the microscopic and macroscopic scales. The next 

subsection will discuss the numerical implementation of this novel concept into the 

semi-concurrent scheme. 

 

(a)                                                             (b) 
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Figure 7: The total amount of elastic strain energy at the macroscopic level for the 2D plane strain 

problem is a summation of the elastic strain energy resulting from the three degrees of freedom. 

 

NUMERICAL IMPLEMENTATION 
 

The semi-concurrent scheme as well as the proposed z-scalar methodology 

was implemented numerically utilizing Python scripting to invoke the nested FE 

solution within the commercial FE software ABAQUS. To reduce initial overhead in 

implementing the multiscale framework the current model was restricted to 2D, plane 

strain analysis. The iterative algorithm is presented below in Figure 8. At each 

incremental step in the analysis, the user material defined subroutine (UMAT) was 

utilized to perform the communication between Python and the ABAQUS solver. The 

left-hand side of Figure 8 highlights the localization process which involves passing of 

the macroscopic deformation gradient from the UMAT to the custom Python script 

which then modifies the boundary conditions to a unit-cell, or RVE, ABAQUS input 

file. The unit-cell job is submitted and once completed is post-processed according to 

the right-hand side of Figure 8. As a test case for implementing non-periodic boundary 

conditions, a choice was made to implement boundary conditions equivalent to that 

shown in Figure 9-(a). These test boundary conditions contains a free edge at one 

boundary, corresponding to a macro scale with similar boundaries. The symmetric 

edge at the left of the RVE was an approximation chosen arbitrarily. 
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Figure 8: Workflow of the semi-concurrent computational homogenization scheme. 

 

 

 

 

 

 

 

 

 
Figure 9: Schematic of (a) the test boundary conditions, which include the free edge, and (b) the 

standard periodic boundary conditions. Note: That P, F, S in the above diagram represent periodic, 

free and symmetric edge, respectively.  

 

The implementation of the free-edge boundary conditions results in a different 

set of localization rules than those used for periodic boundary conditions given as 

 

 (11) 

 

The localization in equation (11) is identical to that in (2) except that the microscale 

displacements are only prescribed on the vertices, v, of the RVE. Elsewhere, non-

vertex nodes are constrained to obey periodicity according to the formulation of Van 

der Sluis et al. [22] and using *Equation keywords in ABAQUS. In the case of the 

boundary conditions shown in Figure 9-(a), the localization shown in Equation (11) is 

prescribed for vertices 1 and 4. For vertices 2 and 3, displacements are only prescribed 

in the 2-direction to account for the free-edge requirement which must remain traction 

free in the 1-direction. Additionally, all nodes lying on the symmetric edge (S*) are 

prescribed displacements in the 1-direction and left undefined in the 2-direction. 

 

 

(a)             (b)    

1 

2 
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Figure 10. Listing of the database post-processing steps performed in the custom Python script.  

 

When implementing periodic boundary conditions, step 4 in Figure 10 is omitted. 

Aside from the macroscopic stress tensor, the material Jacobian needs to be 

determined for the subsequent increment in the global FE analysis and is a required 

output of the UMAT within ABAQUS Standard. The construction of the Jacobian 

from the perturbation steps is summarized in Figure 11. For a given perturbation step, 

a component of strain is set to unity, while all other are set to zero. Thus, the resulting 

stresses computed as a result provide a given column in the jacobian stiffness matrix. 

The stresses are computed using the same procedure as was done for the macroscopic 

stress tensor, utilizing the scaling parameter when necessary (e.g. when non-periodic 

localization is employed). The J33 component must be found externally using standard 

micromechanics, or basic homogenization techniques. Assuming the current type of 

RVE, little damage will be accumulating in the fiber direction, thus this component 

should remain a constant through the entire 2D analysis. The remaining components in 

the JX3 column are found assuming symmetry of the Jacobian. Once the Jacobian is 

computed and exported to a “.csv” file, the Python script is completed. The UMAT 

will then read in the macroscopic stress tensor and Jacobian which outputted back into 

the ABAQUS simulation at the global scale. When periodic boundary conditions are 

employed, the perturbation steps are executed immediately after the stress analysis 

within the same ABAQUS job. For the case of the test boundary conditions in Figure 

9-(a), the operation must be performed as a separate unit-cell job after the completion 

of the stress analysis. Additionally, the boundary conditions are modified to remove 

the free-edge and are shown in Figure 12. The right-hand side of the RVE is perturbed 

using equation (11) for all nodes in both the 1- and 2-directions. The process for 

determining the Jacobian during the post-processing steps is listed in Figure 13. An 

overall summary of the discussed workflow with the Fortran subroutine and Python 

script are highlighted in Figure 14. 

 

 

 

 

 

 

 

 

 

 

1. Reads the EVOL, or current element volume for all elements 

2. Extracts the element stresses within the unit-cell RVE 

3. Computes the volume average of the stresses based on the EVOL 

values 

4. Using the volume averaged stresses and Equation (10), z is calculated 

5. The macroscopic stress tensor is exported to an external “.csv” file 
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Figure 11. The Jacobian matrix, J, is shown with the necessary uni-strain components for 

determining a particular column. The 33 component is determined externally.  

 

 

 

 

 

 

 

 

 

 
Figure 12. Boundary conditions used for the perturbation steps during non-periodic analysis.   

 

 
 

Figure 13. Listing of the post-processing steps  

 

Verification 
 

The first step in verifying the modifications coded into the semi-concurrent 

scheme was to check the validity and robustness of the Jacobian updating procedure 

using the boundary conditions discussed in the previous section. This test was carried 

out by comparing computed elastic moduli (using Mathematica and the exported 

Jacobian matrices from Python) to those predicted from purely periodic boundary 

conditions. A number of test cases were examined including a homogeneous RVE, a 

single fiber RVE, and multi-fiber RVE. For the fiber/matrix RVE’s the fiber volume 

fraction was 45%. Table I presents a comparison of the reference periodic values with 

those computed using the boundary conditions shown in Figure 12. For all three test 

cases, the non-periodic perturbations provided reasonable estimations of the material 

constants. It should be noted, however, that due to the uniform displacement boundary 

conditions on the right-hand side of the RVE caused the elastic moduli to be slighlty 

over-predictive. 

6. Extract the nodal coordinates at the end of the localization step for all 

perturbed nodes 

7. Use Equation (14) to determine BC’s for the three perturbation steps 

Note: These steps are defined as linear perturbation steps in ABAQUS 

8. Generate the necessary input file job and submit (Perturb.inp) 

9. Compute the differential macroscopic stress tensor associated with each 

perturbation 

10. Build the Jacobian and export the resultant to an external “.csv” file 

 

Set =1 
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TABLE I. Computed elastic constants for periodic and non-periodic perturbation steps. 

Homogeneous Solid 

Single Fiber RVE 

(Em = 3.5 GPa,  

Ef = 22GPa) 

25-fiber RVE 

(Em = 3.5 GPa,  

Ef = 22GPa) 

Material 

Constant Periodic 

Non-

Periodic Periodic 

Non-

Periodic Periodic 

Non-

Periodic 

Ex (GPa) 100.00 100.000 20.897 21.257 20.247 20.455 

Ey (GPa) 100.00 100.000 20.897 21.137 20.378 20.419 

vxy 0.300 0.300 0.294 0.295 0.330641 0.328911 

Gxy (GPa) 38.462 38.462 6.438 6.901 7.207075 7.363027 
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Figure 14. Complete workflow of the numerical implementation of the non-periodic, semi-

concurrent scheme. 
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The next step in the verification process was to confirm that the z-scalar 

method preserved energy between the global and local scales even when using non-

periodic boundary conditions. A single, reduced-order quadrilateral element (CPE4R) 

at the global scale was placed under uniaxial tensile loading. The element’s integration 

point was coupled to a 25 multi-fiber RVE with fibers placed randomly within the 

boundary of the RVE. Both periodic as well as the non-periodic free edge boundary 

conditions were employed in two separate iterations and the global elements were 

stretched to 1% strain. As was assumed in the formulation of the z-scalar method, all 

constituents are linear-elastic, however, a cohesive interface following a bilinear 

traction separation exists between the fiber and matrix. The necessary parameter for 

the cohesive interface are the cohesive strength, , and the critical displacement, 

dcrit. The cohesive strength defines the peak traction value in the traction-separation 

law, and the critical displacement specifies the traction-free separation distance. The 

cohesive parameters are chosen to be representative of a relatively weak interface. The 

constituent and interface properties are provided in Table II. 
 

 

TABLE II. Constituent properties for the multi-fiber RVE verification study. 

 E (GPa)  v  σcohe  

 (MPa)  

dcrit  

(m) 

Fiber  22  0.3  -- -- 

Matrix  3.5  0.4  -- -- 

Interface  10E7  -- 50  0.005  

 

 

 It was found during the verification studies that the ETOTAL, or total energy 

history variable, of the system was non-zero, a phenomenon that was indicative of 

incorrect energy computations. Figure 15 shows all the energy history variables 

outputted by ABAQUS. Further investigations revealed that the negative ETOTAL, 

highlighted by the dashed box in Figure 15, were a result of the contributions of the 

cohesive surface to the internal strain energy of the system. When using cohesive 

interactions rather than cohesive elements, the strain energy present in the separation 

of the fiber/matrix interface was not getting added to the total strain energy of the 

RVE system. Although the contribution of the cohesive interface to the strain energy 

of the system can be reduced by increasing the cohesive stiffness, even a sufficiently 

large value of 10E7 GPa had a measurable contribution as shown in Figure 15. 

Equation (12) shows the energy balance equations of relevant energy sources in the 

simulations.  

 

 (12) 

 

Due to the neglecting of cohesive strain energy, the , and consequently the 

, energy terms were being under reported resulting in a negative ETOTAL 

result. 
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Figure 15. Energy history variable outputs for the 16 fiber RVE under periodic boundary conditions 

subject to uniaxial tensile loading. 

 

 
 

Figure 16. Percent difference in external work between the macro and micro scale work for the 16 fiber 

RVE for periodic and non-periodic boundary conditions. 

 

 

As a consequence of the negative ETOTAL values, the computation of the z-

scalar parameter in Equation (10) from the microstructural strain energy had to be 

modified as in  

 

(13) 

 

The values  and  in equation (13) were extracted from ABAQUS from 

the ALLE and ETOTAL history variables. 

Macroscale 

Microscale 
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 The results of the z-scalar verification are presented in Figure 16, plotting the 

percent difference in external work computed by ABAQUS between the global and 

local scales for the two boundary conditions cases (periodic and non-periodic with a 

free edge). Both the global and local external work energies were found to be nearly 

identical for the two test cases, as seen from the relatively small values (<0.4%) in 

Figure 16. Coincidentally, the two test cases had similar external work values 

regardless of the differences in applied boundary conditions on the level of the RVE. 

For the case of the non-periodic boundary conditions, the z-scalar was computed to be 

a value slightly less than unity. For example, at the last increment of the macroscale 

analysis (~1% strain) the z-scalar parameter was computed as 0.984. It was 

hypothesized that this small variation from unity was a function of the test boundary 

conditions and a lack of significant differences in the RVE response for the periodic 

and non-periodic BC’s. Since periodic boundary conditions have been proven to be 

energetically consistent, the close agreement between the macroscale periodic and 

non-periodic external work in Figure 16 would suggest that the implemented z-scalar 

parameter ensures similar consistency. Also, the small variations seen even with the 

periodic boundary conditions were hypothesized to be numerical construct within 

ABAQUS, rather than an imbalance of work between the two scales. 
 

 

APPLICATION 
 

 A case study was undertaken to show an application of z-scalar energy based 

method. The 2D RVE used for the energy verifications and discussed in the previous 

sections was used in the following case study. The objective was to investigate the 

effects of a free edge boundary at the macroscopic level on the constitutive response 

provided by the RVE. The boundary conditions for the RVE were the test, free-edge 

boundary conditions proposed in Figure 9-(a). The RVE’s constituent properties were 

those reported in Table II. Again, damage was restricted to fiber/matrix debonding. 

Fibers were placed into the RVE using an iterative random placement script written in 

Python, for which the highest achievable fiber volume fraction was 45%. Macroscopic 

loading was uniaxial tension as in the diagram on Figure 16. Differences between 

periodic and non-periodic RVE boundary conditions were evaluated according to the 

macroscopic response (evaluated by plotting the elastic strain energy vs strain) as well 

as the elastic moduli (Ex, Ey). Previous research works [27,28] have shown that RVE 

size (number of fibers) affects the macroscopic response, and the appropriate RVE 

size is dependent on the constituent properties of the RVE. Other works have plotted 

the variance in macroscopic (stress-strain) response over a variety of boundary 

conditions, none of which included a free-edge [23,24,26]. In this case study, the RVE 

size is varied from 4 fibers to 36 fibers with multiple iterations (3-4) of random fiber 

placement. 

 Figure 17 plots the elastic strain energy versus macroscopic strain for the 4 

fiber RVE, across several random placement iterations, as well as the comparisons 

between periodic and non-periodic (free) boundary conditions. The curves are labeled 

according to XPerY or XFreeY, where X is the RVE size and Y is the iteration 

number. Dashed curves represent the periodic simulations, and solid curves represent 

those with the non-periodic boundary. The sudden plateaus seen at ~0.6% strain, or 
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dip in the case of iterations 2 & 3, are a result of the cohesive failure. The curves were 

as expected from trend seen in the elastic energy curve shown in Figure 15. 

 
Figure 17. Specific elastic strain energy vs macroscopic strain for the 4-fiber RVE. Dashed lines 

represent the periodic results, solid lines those of the free edge simulations, and the color coding 

corresponds to a given RVE iteration. 
 

 

Figure 18. Macroscopic (2-direction) stress vs strain for the 4-fiber RVE. 
 

 Figures 18-20 plot the macroscopic stress in the loading (22) direction versus 

macroscopic strain. These plots provide the RVE’s macroscopic material response 

under the uniaxial tensile loading. For the 4 RVE cases in Figure 18, only one case 

(iteration 3) had a significantly different response between the two BC’s. A similar 

observation can be made from Figure 17. Figure 18 also highlighted the significant 

variation in material behavior (cohesive failure) between the 4 different RVE 
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iterations as a function of the random placement. Iterations 1 & 4 had significantly  

 

 
Figure 19. Macroscopic (2-direction) stress vs strain for the 16-fiber RVE. 

 

 
Figure 20. Macroscopic (22 direction) stress vs strain for the 36-fiber RVE. 

 

lower peak stress values (pre-cohesive failure) and a more drastic drop in stress before 

reloading. Figure 19 shows the results from the 16 fiber test. The simulation for the 

16Per3 terminated early due to convergence issues present after cohesive failure and is 

indicated on the figure. The first 16 fiber RVE iteration had a nearly identical 

macroscopic response between periodic and non-periodic, while the second iteration 

had significant softer post-peak response in the periodic BC case. For both of these 
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iterations, the periodic response was “softer”, indicative of increased cohesive damage 

as a result of the BC. The significant differences in iterations 1 and 2 between the 

periodic and non-periodic counterparts could be attributed to the RVE fiber placement 

and effect of the free-edge. The RVE for iteration 1, shown at the top left of Figure 19, 

had fewer fibers in the proximity of the right-hand edge versus the RVE for iteration 

2, shown at the bottom left of the figure. The periodic BC caused cohesive failure and 

separation at the fiber highlighted by the black arrow on Figure 19, whereas the free 

edge did not cause failure/separation. The 36 fiber RVE results presented in Figure 20 

highlighted two main points. First, as expected from literature, the variation in 

material macroscopic response decreased across the random fiber iterations. Second, 

the periodic boundary conditions suffered from numerical convergence issues 

resulting from premature failure in the cohesive surfaces, highlighted on the figure. 

This happened for two of the three periodic cases; however, the premature failure did 

not affect the material’s tensile strength as was with the premature failure of the 

16Per3 case. The free-edge simulations, however, were able to reach the final 

macroscopic loading of 1% strain with no issues. Iteration 1, which completed to 1% 

for both BC’s, showed little differences in the macroscopic response. The similarity of 

periodic and non-periodic response for iteration 1 can again be attributed to the 

proximity of fibers to the right edge of the RVE, shown at the top-right of Figure 19. 

Additionally, extracting the initial modulus (slope) from the across the periodic 

(dashed) and non-periodic (solid) curves in Figures 18-20. First, there was a decrease 

in variation of the initial modulus within increasing RVE size. The initial modulus 

converged for the 36 fiber case (6.7 GPa), and was slightly softer than that predicted 

for the 4 and 16 fiber cases (7.1~6.8 GPa).  

 

 

CONCLUSION 
 

The developed energy based coupling using the z-scalar method allows one to 

investigate the effect of non-periodic RVE boundary conditions at the microscale on 

the global response of the composite. The introduction of a z-scalar parameter allows 

for the preservation of elastic strain energy between the macroscopic and microscopic 

domain and is independent of the type of boundary conditions employed on the RVE. 

The current implementation, however, is limited to a 2D RVE domain, and the 

formulation of the z-scalar method restricts the RVE to one for which elastic softening 

is the cause of macroscopic nonlinearity (in this case, cohesive failure).  

Despite these current limitations, the robustness of the proposed methodology 

was shown through a practical investigation of the effect of macroscopic free-edges on 

the macroscopic response of a 2D fiber/matrix RVE with cohesive interfaces. The 

results presented suggest that the overall macroscopic response was largely affected by 

fiber proximity to the free-edge at the microscopic level. A larger number of fibers 

close to the free-edge result in greater damage evolution from periodic BC’s versus 

non-periodic, free edge BC’s. The results suggest that higher fiber volume fraction 

RVE’s, creating an abundance of fibers near the free-edge, would increase the effect 

of the free-edge to the damage evolution. Namely, a stiffer post-peak response would 

result from accounting for a macroscopic free-edge. 

Future work will develop the z-scalar methodology into a work-based 

equivalence, rather than elastic strain energy, to allow for plastic deformation and/or 
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crack growth within the RVE. Applying a work-based form of the z-scalar method and 

novel BC’s will allow for the exploration RVE crack initiation and modeling using 

XFEM. Appropriate localization schemes will be developed to allow for deformations 

conducive for crack opening. 
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